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HIGHLIGHTS
We propose a new learning algorithm for learned ISTA, that:
• reduces MILLIONS of parameters to only 32 scalars;
• shortens the training time from 1.5 HOURS to 6 MINUTES;
• achieves a provably optimal linear convergence rate.

INTRODUCTION TO LEARNED ISTA (LISTA)
Problem: Recover a sparse vector x∗ from its noisy measurements by D ∈ RN×M :

b = Dx∗ + ε,
LASSO:

minimize
x

1

2
‖b−Dx‖22 + λ‖x‖1

Iterative shrinkage thresholding algorithm (ISTA)

xk+1 = ηλ/L

(
xk +

1

L
DT (b−Dxk)

)
, k = 0, 1, 2, . . . (ISTA)

where ηθ is soft-thresholding, λ and L are selected by hand or cross-validation. ISTA
converges sublinearly and eventually-linearly to a LASSO solution, not x∗.

LISTA: unrolls ISTA with K total iterations to a neural network, replace λ/L, D,DT by
free matrices (known as Learned ISTA or LISTA [1]):

xk+1 = ηθk(Wk
1b + Wk

2x
k), k = 0, 1, · · · ,K − 1, (LISTA)

Inputs are x0 and b. Output xK is our recovery.

Training (deciding θk, Wk
1 , Wk

2 ) For a fixed D and almost all (b,x∗) following a certain
distribution, obtain parameters ΘK = {(Wk

1 ,W
k
2 , θk)}K−1

k=0 such that xK approximates
x∗ (the ground truth).
In another word, given the distributions of b and x∗, we

minimize
ΘK

1

2
Eb,x∗

∥∥xK(
ΘK ,b,x0

)
− x∗

∥∥2

2
.

Stochastic gradient descent (SGD) can be applied to solve this minimization problem.
The gradient w.r.t. xK on ΘK are obtained with the chain rule.

LISTA-CP: In [2], parameters are reduced by coupling: Wk
2 = I −Wk

1D. With Wk :=
(Wk

1)T , the formulation of LISTA-CP is

xk+1 = ηθk(xk − (Wk)T (Dxk − b)). (LISTA-CP)

Issues: With O(KNM) trainable parameters, training takes 1.5 hours on a GTX 1080Ti.
Can we reduce the number of trainable parameters and training time?

OUR CONTRIBUTIONS

• We show that the layer-wise weights Wk in (LISTA-CP) can be given by a data-free
optimization problem. Our method is called ALISTA with the A for “analytic.”

• The new scheme preserves the linear convergence proved in [2]. In addition, we de-
velop a recovery error lower bound that shows the linear convergence rate is optimal
w.r.t. the order of convergence.

• We design a robust ALISTA model that is robust to noises in the dictionary D.
• We extend our algorithms and theories to the case where D is a convolutional operator.

(See our paper [3] for details.)

FROM LISTA TO ALISTA
In compressive sensing, a dictionary D with smaller mutual coherence leads to the better
recovery performance. Similarly, good weights Wk in (LISTA-CP) satisfy the following
condition up to a scalar.
Coherence Minimization: Given D ∈ RN×M (columns normalized), we take

W̃ ∈ arg min
W∈RN×M

(W:,i)
TD:,i=1,1≤i≤M

{
max
i 6=j

1≤i,j≤M

(W:,i)
TD:,j

}
. (1)

We have proved that the optimization problem in (1) is feasible and attainable.

Theorem 1 (Recovery error upper bound) Suppose ε = 0 and let {xk}∞k=1 be generated by
(LISTA-CP). There exists a sequence of parameters {γk, θk}k such that, with

Wk = γkW̃, W̃ calculated by (1), (2)

we have the following error bound:

‖xk
(
Θk,b,x0

)
− x∗‖2 ≤ C exp(−ck) (3)

uniformly for all x∗ satisfying some assumptions (see [3]), where c, C > 0 are constants that
depend only on D and the distribution of x∗.

Theorem 2 (Recovery error lower bound) Suppose ε = 0 and let {xk}∞k=1 be generated by
(LISTA-CP). For all parameters {Wk, θk}∞k=0 satisfying some mild conditions (see [3]) and any
sufficient small ε > 0, we have

‖xk
(
Θk,b,x0

)
− x∗‖2 ≥ ε‖x∗‖2 exp(−c̄k), with proability (1− pε), (4)

where c̄, p > 0 are constants that depend only on D and the distribution of x∗.

Theorem 1 shows that (2) significantly simplifies the model without compromising
the linear convergence rate of (LISTA-CP). Theorem 2 shows that, with high probability,
this rate is optimal w.r.t. the order of convergence.

Applying (2) to (LISTA-CP), we propose:

TiLISTA: xk+1 = ηθk(xk − γkWT (Dxk − b)), trainable parameters: {γk, θk}k and W.

ALISTA: xk+1 = ηθk(xk − γkW̃T (Dxk − b)), trainable parameters: {γk, θk}k.

Comparison of Parameter Spaces: All algorithms are truncated to K steps/layers.

LISTA[1] LISTA-CP[2] TiLISTA (this poster) ALISTA (this poster)
O(KM2 +K +MN) O(KNM +K) O(NM +K) O(K)

END-TO-END ROBUST ALISTA
Motivation: If a noisy dictionary D̃ = D + εD is observed, ALISTA performs bad.
Robust ALISTA: uses an encoder net to feed W̃ into the decoder, an ALISTA net.

Encoder: unfolds and truncates the optimization algorithm for (1).
Decoder: an ALISTA net.

Numerical Validation: Robust ALISTA is much robust to the noise on D, shown in the
plot of recovery NMSE v.s. testing noise standard deviation below. The red vertical line
represents maximal noise in training stage.
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NUMERICAL VALIDATION
Validation of Theorem 1: LISTA-CPSS, TiLISTA and ALISTA adopt the support selection technique developed in [2].
Noiseless Case: TiLISTA and ALISTA achieve even better NMSE compared to LISTA-CPSS in [2], with much fewer parameters and less training time. Training LISTA-CPSS takes
1.5 hours; training ALISTA takes only 6 minutes.
Noisy Case: TiLISTA and ALISTA can still achieve comparable recovery error when high level noises exist.

σ = 0 (Noiseless)
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σ2 ≈ 2× 10−4 (SNR=30dB)
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