

HIGHLIGHTS

We propose a new learning algorithm for learned ISTA, that:

- reduces **MILLIONS** of parameters to only **32** scalars;
- shortens the training time from **1.5 HOURS** to **6 MINUTES**;
- achieves a provably **optimal linear** convergence rate.

INTRODUCTION TO LEARNED ISTA (LISTA)

Problem: Recover a sparse vector **x**^{*} from its noisy measurements by

LASSO:

$$\mathbf{b} = \mathbf{D}\mathbf{x}^* + \varepsilon,$$

$$\operatorname{ninimize} \frac{1}{2} \|\mathbf{b} - \mathbf{D}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

Iterative shrinkage thresholding algorithm (ISTA)

$$\mathbf{x}^{k+1} = \eta_{\lambda/L} \left(\mathbf{x}^k + \frac{1}{L} \mathbf{D}^T (\mathbf{b} - \mathbf{D} \mathbf{x}^k) \right), \quad k = 0, 1, 2, \dots$$

where η_{θ} is soft-thresholding, λ and L are selected by hand or crossconverges sublinearly and eventually-linearly to a LASSO solution,

LISTA: unrolls ISTA with *K* total iterations to a neural network, repla free matrices (known as Learned ISTA or LISTA [1]):

$$\mathbf{x}^{k+1} = \eta_{\theta_k} (\mathbf{W}_1^k \mathbf{b} + \mathbf{W}_2^k \mathbf{x}^k), \quad k = 0, 1, \cdots, K-1,$$

Inputs are \mathbf{x}^0 and \mathbf{b} . Output \mathbf{x}^K is our recovery.

Training (deciding θ_k , \mathbf{W}_1^k , \mathbf{W}_2^k) For a fixed **D** and almost all (**b**, **x**^{*}) for distribution, obtain parameters $\Theta^{K} = \{(\mathbf{W}_{1}^{k}, \mathbf{W}_{2}^{k}, \theta_{k})\}_{k=0}^{K-1}$ such that \mathbf{x}^* (the ground truth).

In another word, given the distributions of b and x^* , we

$$\underset{\Theta^{K}}{\text{minimize}} \ \frac{1}{2} \mathbb{E}_{\mathbf{b},\mathbf{x}^{*}} \| \mathbf{x}^{K} (\Theta^{K},\mathbf{b},\mathbf{x}^{0}) - \mathbf{x}^{*} \|_{2}^{2}.$$

Stochastic gradient descent (SGD) can be applied to solve this minin The gradient w.r.t. \mathbf{x}^{K} on Θ^{K} are obtained with the chain rule.

LISTA-CP: In [2], parameters are reduced by coupling: $\mathbf{W}_2^k = \mathbf{I} - \mathbf{W}_2^k$ $(\mathbf{W}_1^k)^T$, the formulation of LISTA-CP is

$$\mathbf{x}^{k+1} = \eta_{\theta_k} (\mathbf{x}^k - (\mathbf{W}^k)^T (\mathbf{D}\mathbf{x}^k - \mathbf{b})).$$

Issues: With O(KNM) trainable parameters, training takes 1.5 hours Can we reduce the number of trainable parameters and training time?

OUR CONTRIBUTIONS

- We show that the layer-wise weights \mathbf{W}^k in (LISTA-CP) can be given by optimization problem. Our method is called ALISTA with the A for
- The new scheme preserves the linear convergence proved in [2]. In velop a recovery error lower bound that shows the linear convergen w.r.t. the order of convergence.
- We design a robust ALISTA model that is robust to noises in the dict
- We extend our algorithms and theories to the case where D is a convo (See our paper [3] for details.)

OpenReview

Github

ALISTA: Analytic Weights Are As Good As Learned Weights in LISTA

Jialin Liu* (UCLA Math) Xiaohan Chen* (Texas A&M CSE)

Zhangyang Wang (Texas A&M CSE)

	FROM
	In compare recovery condition Coheren
$\mathbf{y} \ \mathbf{D} \in \mathbb{R}^{N imes M}$:	We have Theorem (LISTA-C
. (ISTA)	we have t
s-validation. ISTA not x*. lace λ/L , D, D ^T by (LISTA)	uniformly depend or Theorem (<i>LISTA-C</i> sufficient
following a certain \mathbf{x}^{K} approximates	where \bar{c}, p Theorem the linear this rate Appl
mization problem.	TiLISTA
$\mathbf{V}_1^k \mathbf{D}$. With $\mathbf{W}^k :=$	ALISTA
(LISTA-CP)	Compari
s on a GTX 1080Ti.	$\frac{\Box}{O(KM)}$
ven by a data-free "analytic." n addition, we de- nce rate is optimal tionary D. olutional operator.	NUME Validatio Noiseles 1.5 hours Noisy Ca

LISTA TO ALISTA

pressive sensing, a dictionary ${f D}$ with smaller ${f mutual}$ coherence leads to the better performance. Similarly, good weights \mathbf{W}^k in (LISTA-CP) satisfy the following on up to a scalar.

nce Minimization: Given $\mathbf{D} \in \mathbb{R}^{N \times M}$ (columns normalized), we take $ilde{\mathbf{W}} \in$

 $\begin{array}{c} \operatorname*{arg\,min}_{\mathbf{W}\in\mathbb{R}^{N\times M}}\\ (\mathbf{W}_{:,i})^{T}\mathbf{D}_{:,i}=1, 1\leq i\leq M \end{array}$

proved that the optimization problem in (1) is feasible and attainable.

n 1 (Recovery error upper bound) Suppose $\varepsilon = 0$ and let $\{\mathbf{x}^k\}_{k=1}^{\infty}$ be generated by **CP**). There exists a sequence of parameters $\{\gamma_k, \theta_k\}_k$ such that, with

 $\mathbf{W}^k = \gamma_k \tilde{\mathbf{W}}, \quad \tilde{\mathbf{W}} \text{ calculated by (1)},$

the following error bound:

 $\|\mathbf{x}^k(\Theta^k, \mathbf{b}, \mathbf{x}^0) - \mathbf{x}^*\|_2 \le C \exp(-ck)$

ly for all \mathbf{x}^* satisfying some assumptions (see [3]), where c, C > 0 are constants that only on \mathbf{D} and the distribution of \mathbf{x}^* .

n 2 (Recovery error lower bound) Suppose $\varepsilon = 0$ and let $\{\mathbf{x}^k\}_{k=1}^{\infty}$ be generated by **•CP**). For all parameters $\{\mathbf{W}^k, \theta_k\}_{k=0}^{\infty}$ satisfying some mild conditions (see [3]) and any small $\epsilon > 0$, we have

 $\|\mathbf{x}^{k}(\Theta^{k}, \mathbf{b}, \mathbf{x}^{0}) - \mathbf{x}^{*}\|_{2} \ge \epsilon \|\mathbf{x}^{*}\|_{2} \exp(-\bar{c}k), \quad \text{with proability } (1 - p\epsilon),$

p > 0 are constants that depend only on **D** and the distribution of \mathbf{x}^* .

orem 1 shows that (2) significantly simplifies the model without compromising ar convergence rate of (LISTA-CP). Theorem 2 shows that, with high probability, e is optimal w.r.t. the order of convergence. lying (2) to (LISTA-CP), we propose:

A: $\mathbf{x}^{k+1} = \eta_{\theta_k} (\mathbf{x}^k - \gamma_k \mathbf{W}^T (\mathbf{D}\mathbf{x}^k - \mathbf{b}))$, trainable parameters: $\{\gamma_k, \theta_k\}_k$ and \mathbf{W} .

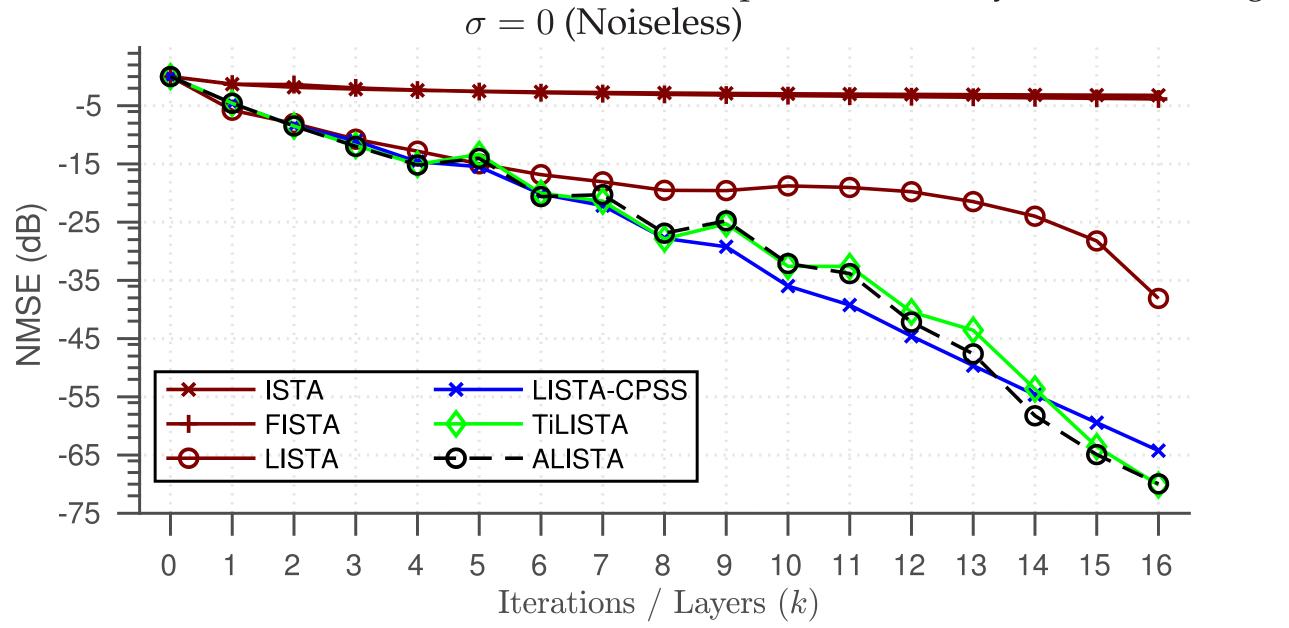
A: $\mathbf{x}^{k+1} = \eta_{\theta_k} (\mathbf{x}^k - \gamma_k \tilde{\mathbf{W}}^T (\mathbf{D} \mathbf{x}^k - \mathbf{b}))$, trainable parameters: $\{\gamma_k, \theta_k\}_k$.

rison of Parameter Spaces: All algorithms are truncated to *K* steps/layers.

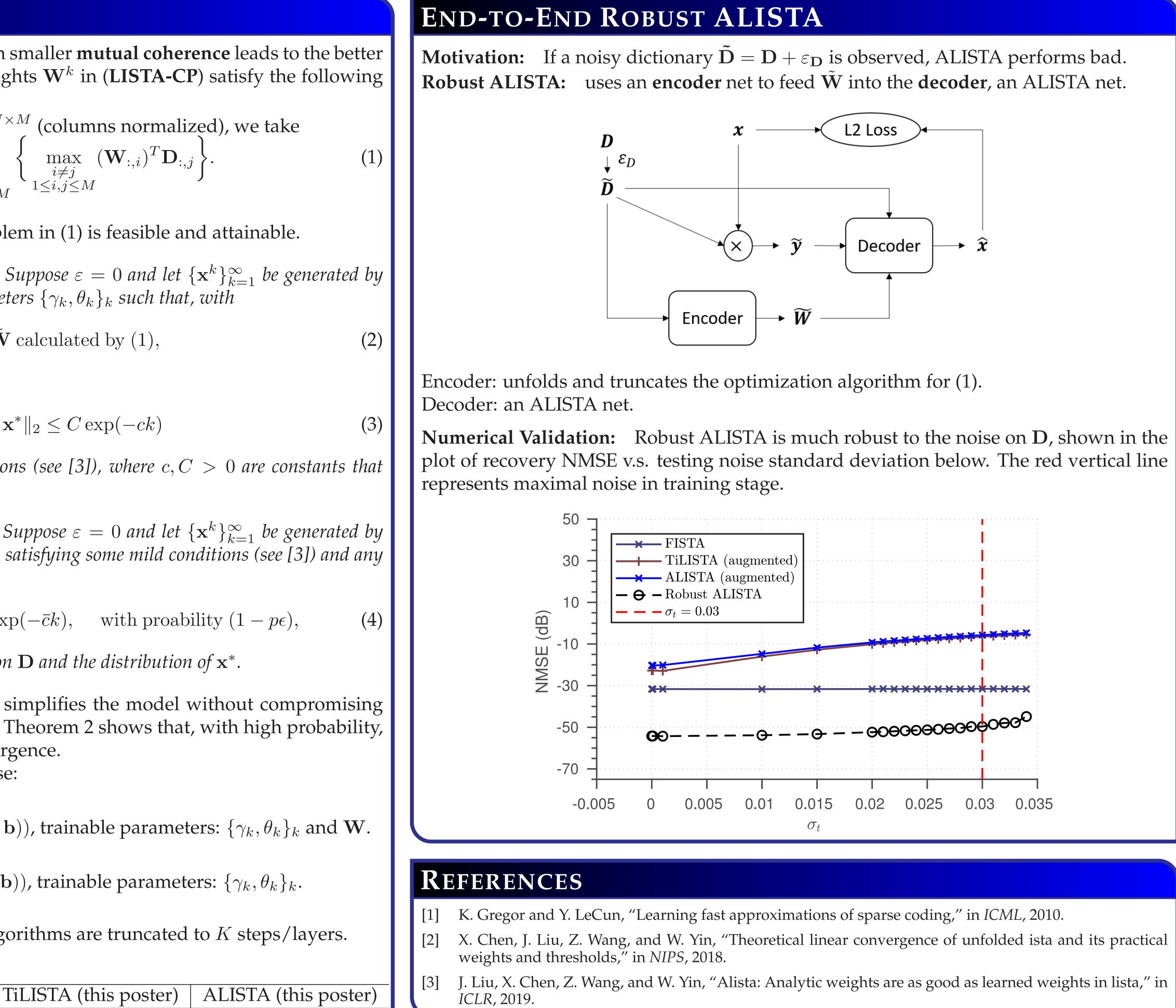
LISTA[1]	LISTA-CP[2]	TiLISTA (this pos
$O(KM^2 + K + MN)$	O(KNM+K)	O(NM+K)

ERICAL VALIDATION

ion of Theorem 1: LISTA-CPSS, TiLISTA and ALISTA adopt the support selection technique developed in [2]. ss Case: TiLISTA and ALISTA achieve even better NMSE compared to LISTA-CPSS in [2], with much fewer parameters and less training time. Training LISTA-CPSS takes rs; training ALISTA takes only **6 minutes**. Case: TiLISTA and ALISTA can still achieve comparable recovery error when high level noises exist.



Wotao Yin (UCLA Math)



O(K)

