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HIGHLIGHTS

We propose a new learning algorithm for learned ISTA, that:

e reduces MILLIONS of parameters to only 32 scalars;
e shortens the training time from 1.5 HOURS to 6 MINUTES;
e achieves a provably optimal linear convergence rate.

INTRODUCTION TO LEARNED ISTA (LISTA)

Problem: Recover a sparse vector x* from its noisy measurements by D &

RNXM.

b =Dx" + ¢,

LASSO:

1
minimize §Hb — Dx||3 + \|x]|:

Iterative shrinkage thresholding algorithm (ISTA)

1
xF L — nA/L(Xk + —DT(b — ka)), k=0,1,2,...

. (ISTA)

where 7y is soft-thresholding, A\ and L are selected by hand or cross-validation. ISTA
converges sublinearly and eventually-linearly to a LASSO solution, not x*.

LISTA: unrolls ISTA with K total iterations to a neural network, replace A\/L, D, D by
free matrices (known as Learned ISTA or LISTA [1]):
x"th =g (Wib + WEx®), k=01,

K —1, (LISTA)

Inputs are x” and b. Output x* is our recovery.

Training (deciding 0, W%, W£) For a fixed D and almost all (b, x*) following a certain
distribution, obtain parameters ©% = {(W} Wk 0,)}" ! such that x¥ approximates
x* (the ground truth).

In another word, given the distributions of b and x*, we

.. 1
minimize §Eb,x*

L XK(@K,b,XO) —X*Hg.

Stochastic gradient descent (SGD) can be applied to solve this minimization problem.
The gradient w.r.t. x* on ©F are obtained with the chain rule.

LISTA-CP: In [2], parameters are reduced by coupling: W5 =T — WFD. With W* .=
(W)L, the formulation of LISTA-CP is
x" =y (xF — (WF)T(Dx" — b)). (LISTA-CP)

Issues: With O(K N M) trainable parameters, training takes 1.5 hours on a GTX 1080Ti.
Can we reduce the number of trainable parameters and training time?

OUR CONTRIBUTIONS

We show that the layer-wise weights W* in (LISTA-CP) can be given by a data-free
optimization problem. Our method is called ALISTA with the A for “analytic.”

The new scheme preserves the linear convergence proved in [2]. In addition, we de-
velop a recovery error lower bound that shows the linear convergence rate is optimal
w.r.t. the order of convergence.

We design a robust ALISTA model that is robust to noises in the dictionary D.

We extend our algorithms and theories to the case where D is a convolutional operator.

(See our paper [3] for details.)
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FROM LISTA 1O ALISTA END-TO-END ROBUST ALISTA

In compressive sensing, a dictionary D with smaller mutual coherence leads to the better
recovery performance. Similarly, good weights W* in (LISTA-CP) satisfy the following
condition up to a scalar.

Motivation: If a noisy dictionary D = D + ep is observed, ALISTA performs bad.
Robust ALISTA: wuses an encoder net to feed W into the decoder, an ALISTA net.

Coherence Minimization: Given D € R"*" (columns normalized), we take D X
W ¢ arg min { max (W:ﬂ;)TD;’j}. (1) | €p
WeRN*M <?7£'°7<M ~
(W, )TD.;=1,1<i<M =S D

We have proved that the optimization problem in (1) is feasible and attainable.

\Ggﬁ y *{ Decoder }—‘ X
Theorem 1 (Recovery error upper bound) Suppose ¢ = 0 and let {x"}°°, be generated by I

(LISTA-CP). There exists a sequence of parameters {vx, 0y } 1. such that, with N
Encoder w
(2)

Encoder: unfolds and truncates the optimization algorithm for (1).
Decoder: an ALISTA net.

W* =~ W, W calculated by (1).
we have the following error bound:

k k 0 *
O b — <C —ck 3
Ix ( 0y X ) x|z < Cexp(—ck) ) Numerical Validation: Robust ALISTA is much robust to the noise on D, shown in the

plot of recovery NMSE v.s. testing noise standard deviation below. The red vertical line

uniformly for all x* satisfying some assumptions (see [3]), where ¢,C > 0 are constants that
represents maximal noise in training stage.

depend only on D and the distribution of x*.
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Theorem 2 (Recovery error lower bound) Suppose ¢ = 0 and let {x"}$° , be generated by ) T |
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TiLISTA: x*t! =, (x* — 3, WT(Dx" — b)), trainable parameters: {7, 0} and W.
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LISTA[1]
O(KM*+ K + MN)

LISTA-CP[2]
O(KNM + K)

TiLISTA (this poster)
O(NM + K)

ALISTA (this poster)
O(K)

NUMERICAL VALIDATION

Validation of Theorem 1: LISTA-CPSS, TiLISTA and ALISTA adopt the support selection technique developed in [2].
Noiseless Case: TiLISTA and ALISTA achieve even better NMSE compared to LISTA-CPSS in [2], with much fewer parameters and less training time. Training LISTA-CPSS takes
1.5 hours; training ALISTA takes only 6 minutes.

Noisy Case: TiLISTA and ALISTA can still achieve comparable recovery error when high level noises exist.
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