



### HIGHLIGHTS

We propose a new learning algorithm for learned ISTA, that:

- reduces **MILLIONS** of parameters to only **32** scalars;
- shortens the training time from **1.5 HOURS** to **6 MINUTES**;
- achieves a provably **optimal linear** convergence rate.

### **INTRODUCTION TO LEARNED ISTA (LISTA)**

**Problem:** Recover a sparse vector **x**<sup>\*</sup> from its noisy measurements by

LASSO:

$$\mathbf{b} = \mathbf{D}\mathbf{x}^* + \varepsilon,$$

$$\operatorname{ninimize} \frac{1}{2} \|\mathbf{b} - \mathbf{D}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

**Iterative shrinkage thresholding algorithm (ISTA)** 

$$\mathbf{x}^{k+1} = \eta_{\lambda/L} \left( \mathbf{x}^k + \frac{1}{L} \mathbf{D}^T (\mathbf{b} - \mathbf{D} \mathbf{x}^k) \right), \quad k = 0, 1, 2, \dots$$

where  $\eta_{\theta}$  is soft-thresholding,  $\lambda$  and L are selected by hand or crossconverges sublinearly and eventually-linearly to a LASSO solution,

**LISTA:** unrolls ISTA with *K* total iterations to a neural network, repla free matrices (known as Learned ISTA or LISTA [1]):

$$\mathbf{x}^{k+1} = \eta_{\theta_k} (\mathbf{W}_1^k \mathbf{b} + \mathbf{W}_2^k \mathbf{x}^k), \quad k = 0, 1, \cdots, K-1,$$

Inputs are  $\mathbf{x}^0$  and  $\mathbf{b}$ . Output  $\mathbf{x}^K$  is our recovery.

**Training (deciding**  $\theta_k$ ,  $\mathbf{W}_1^k$ ,  $\mathbf{W}_2^k$ ) For a fixed **D** and almost all (**b**, **x**<sup>\*</sup>) for distribution, obtain parameters  $\Theta^{K} = \{(\mathbf{W}_{1}^{k}, \mathbf{W}_{2}^{k}, \theta_{k})\}_{k=0}^{K-1}$  such that  $\mathbf{x}^*$  (the ground truth).

In another word, given the distributions of b and  $x^*$ , we

$$\underset{\Theta^{K}}{\text{minimize}} \ \frac{1}{2} \mathbb{E}_{\mathbf{b},\mathbf{x}^{*}} \| \mathbf{x}^{K} (\Theta^{K},\mathbf{b},\mathbf{x}^{0}) - \mathbf{x}^{*} \|_{2}^{2}.$$

Stochastic gradient descent (SGD) can be applied to solve this minin The gradient w.r.t.  $\mathbf{x}^{K}$  on  $\Theta^{K}$  are obtained with the chain rule.

**LISTA-CP:** In [2], parameters are reduced by coupling:  $\mathbf{W}_2^k = \mathbf{I} - \mathbf{W}_2^k$  $(\mathbf{W}_1^k)^T$ , the formulation of LISTA-CP is

$$\mathbf{x}^{k+1} = \eta_{\theta_k} (\mathbf{x}^k - (\mathbf{W}^k)^T (\mathbf{D}\mathbf{x}^k - \mathbf{b})).$$

**Issues:** With O(KNM) trainable parameters, training takes 1.5 hours Can we reduce the number of trainable parameters and training time?

### **OUR CONTRIBUTIONS**

- We show that the layer-wise weights  $\mathbf{W}^k$  in (LISTA-CP) can be given by optimization problem. Our method is called ALISTA with the A for
- The new scheme preserves the linear convergence proved in [2]. In velop a recovery error lower bound that shows the linear convergen w.r.t. the order of convergence.
- We design a robust ALISTA model that is robust to noises in the dict
- We extend our algorithms and theories to the case where D is a convo (See our paper [3] for details.)

OpenReview



Github



# ALISTA: Analytic Weights Are As Good As Learned Weights in LISTA

Jialin Liu\* (UCLA Math) Xiaohan Chen\* (Texas A&M CSE)

Zhangyang Wang (Texas A&M CSE)

|                                                                                                                     | FROM                                                                       |
|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
|                                                                                                                     | In compare<br>recovery<br>condition<br><b>Coheren</b>                      |
|                                                                                                                     |                                                                            |
| $\mathbf{y} \ \mathbf{D} \in \mathbb{R}^{N 	imes M}$ :                                                              | We have<br>Theorem<br>(LISTA-C                                             |
| . (ISTA)                                                                                                            | we have t                                                                  |
| s-validation. ISTA<br>not x*.<br>lace $\lambda/L$ , D, D <sup>T</sup> by<br>(LISTA)                                 | uniformly<br>depend or<br><b>Theorem</b><br>( <i>LISTA-C</i><br>sufficient |
| following a certain $\mathbf{x}^{K}$ approximates                                                                   | where $\bar{c}, p$<br>Theorem<br>the linear<br>this rate<br>Appl           |
| mization problem.                                                                                                   | TiLISTA                                                                    |
| $\mathbf{V}_1^k \mathbf{D}$ . With $\mathbf{W}^k :=$                                                                | ALISTA                                                                     |
| (LISTA-CP)                                                                                                          | Compari                                                                    |
| s on a GTX 1080Ti.                                                                                                  | $\frac{\Box}{O(KM)}$                                                       |
|                                                                                                                     |                                                                            |
| ven by a data-free<br>"analytic."<br>n addition, we de-<br>nce rate is optimal<br>tionary D.<br>olutional operator. | NUME<br>Validatio<br>Noiseles<br>1.5 hours<br>Noisy Ca                     |
|                                                                                                                     |                                                                            |

## LISTA TO ALISTA

pressive sensing, a dictionary  ${f D}$  with smaller  ${f mutual}$  coherence leads to the better performance. Similarly, good weights  $\mathbf{W}^k$  in (LISTA-CP) satisfy the following on up to a scalar.

**nce Minimization:** Given  $\mathbf{D} \in \mathbb{R}^{N \times M}$  (columns normalized), we take  $ilde{\mathbf{W}} \in$ 

 $\begin{array}{c} \operatorname*{arg\,min}_{\mathbf{W}\in\mathbb{R}^{N\times M}}\\ (\mathbf{W}_{:,i})^{T}\mathbf{D}_{:,i}=1, 1\leq i\leq M \end{array}$ 

proved that the optimization problem in (1) is feasible and attainable.

**n 1 (Recovery error upper bound)** Suppose  $\varepsilon = 0$  and let  $\{\mathbf{x}^k\}_{k=1}^{\infty}$  be generated by **CP**). There exists a sequence of parameters  $\{\gamma_k, \theta_k\}_k$  such that, with

 $\mathbf{W}^k = \gamma_k \tilde{\mathbf{W}}, \quad \tilde{\mathbf{W}} \text{ calculated by (1)},$ 

the following error bound:

 $\|\mathbf{x}^k(\Theta^k, \mathbf{b}, \mathbf{x}^0) - \mathbf{x}^*\|_2 \le C \exp(-ck)$ 

ly for all  $\mathbf{x}^*$  satisfying some assumptions (see [3]), where c, C > 0 are constants that only on  $\mathbf{D}$  and the distribution of  $\mathbf{x}^*$ .

**n 2 (Recovery error lower bound)** Suppose  $\varepsilon = 0$  and let  $\{\mathbf{x}^k\}_{k=1}^{\infty}$  be generated by **•CP**). For all parameters  $\{\mathbf{W}^k, \theta_k\}_{k=0}^{\infty}$  satisfying some mild conditions (see [3]) and any small  $\epsilon > 0$ , we have

 $\|\mathbf{x}^{k}(\Theta^{k}, \mathbf{b}, \mathbf{x}^{0}) - \mathbf{x}^{*}\|_{2} \ge \epsilon \|\mathbf{x}^{*}\|_{2} \exp(-\bar{c}k), \quad \text{with proability } (1 - p\epsilon),$ 

p > 0 are constants that depend only on **D** and the distribution of  $\mathbf{x}^*$ .

orem 1 shows that (2) significantly simplifies the model without compromising ar convergence rate of (LISTA-CP). Theorem 2 shows that, with high probability, e is optimal w.r.t. the order of convergence. lying (2) to (LISTA-CP), we propose:

A:  $\mathbf{x}^{k+1} = \eta_{\theta_k} (\mathbf{x}^k - \gamma_k \mathbf{W}^T (\mathbf{D}\mathbf{x}^k - \mathbf{b}))$ , trainable parameters:  $\{\gamma_k, \theta_k\}_k$  and  $\mathbf{W}$ .

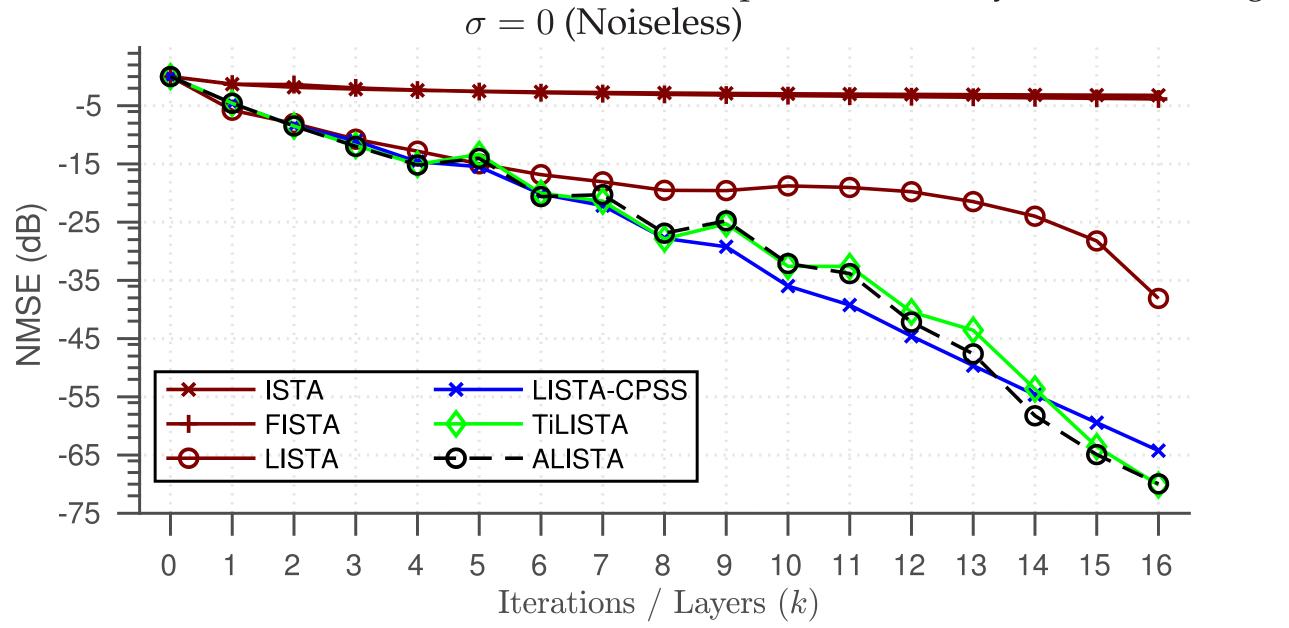
A:  $\mathbf{x}^{k+1} = \eta_{\theta_k} (\mathbf{x}^k - \gamma_k \tilde{\mathbf{W}}^T (\mathbf{D} \mathbf{x}^k - \mathbf{b}))$ , trainable parameters:  $\{\gamma_k, \theta_k\}_k$ .

**rison of Parameter Spaces:** All algorithms are truncated to *K* steps/layers.

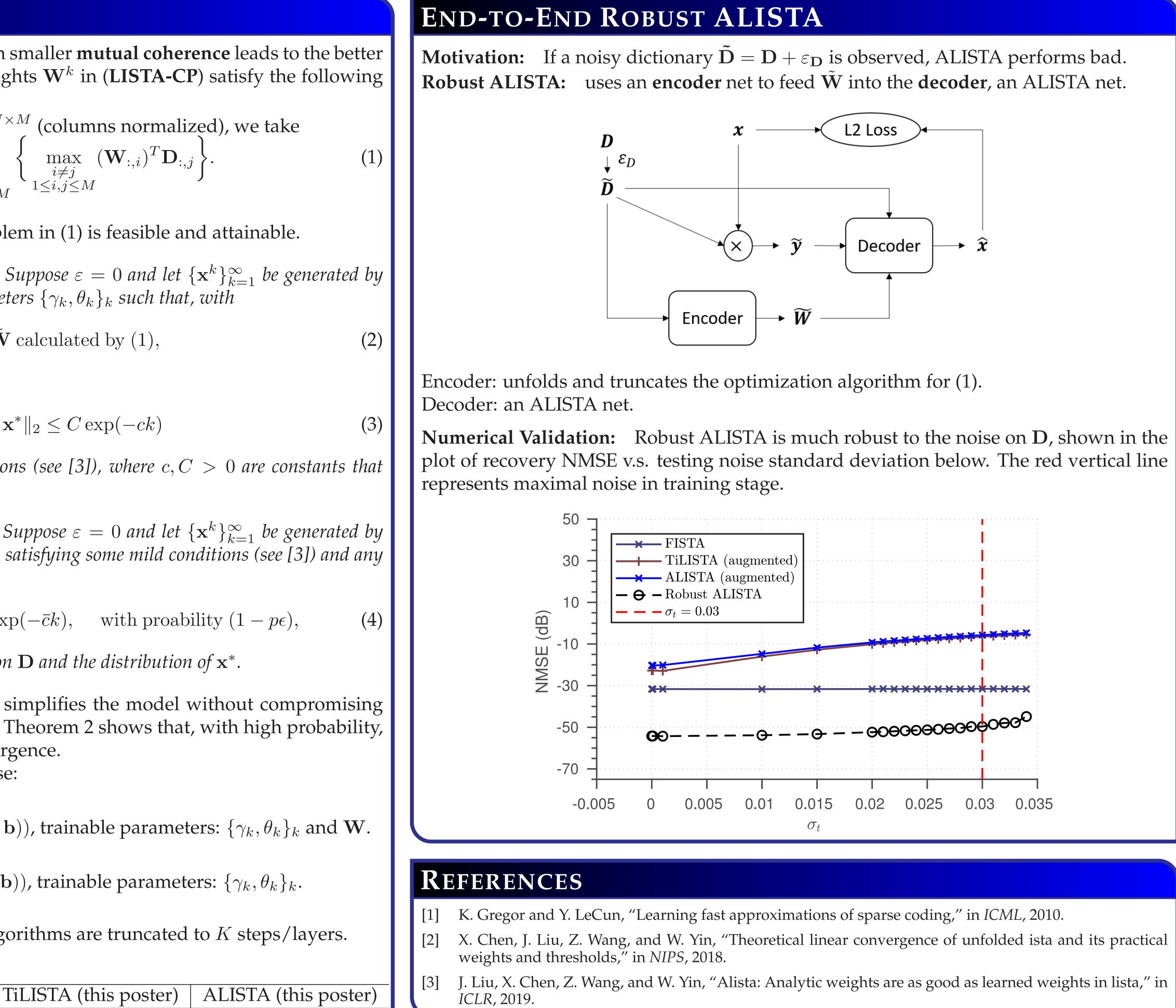
| LISTA[1]           | LISTA-CP[2] | TiLISTA (this pos |
|--------------------|-------------|-------------------|
| $O(KM^2 + K + MN)$ | O(KNM+K)    | O(NM+K)           |

# ERICAL VALIDATION

ion of Theorem 1: LISTA-CPSS, TiLISTA and ALISTA adopt the support selection technique developed in [2]. ss Case: TiLISTA and ALISTA achieve even better NMSE compared to LISTA-CPSS in [2], with much fewer parameters and less training time. Training LISTA-CPSS takes rs; training ALISTA takes only **6 minutes**. Case: TiLISTA and ALISTA can still achieve comparable recovery error when high level noises exist.



Wotao Yin (UCLA Math)





O(K)

